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Abstract
A timing chain drive transfers motion from the engine’s

crankshaft to the camshaft that operates the valves. The
design process of timing chain drives involves computer
simulation of many design variants in order to find an op-
timum. Most of the simulation results can be represented
as families of function graphs (data series). Previously,
the analysis of those results was based on static 2D dia-
grams and animated 3D visualizations. They were suitable
for the detailed analysis of a few simulation variants, but
not for the comparison of many cases. In this paper we
propose a new approach to the analysis based on coordi-
nated linked views and advanced brushing features. Our
proposed method supports the interactive analysis of many
design variants. We introduce a novel view, called seg-
mented curve view, which can display distributions in fam-
ilies of function graphs. The segmented curve view com-
bines individual function graphs where for a fixed value
of the independent variable, a bar extends from minimum
to maximum values across the family of function graphs.
Each bar is divided into segments (bins) with a color that
represents the number of function graphs with the value
in that segment. In the case study, we demonstrate that
the new view combined with “traditional” views provides
a strong support for the interactive visual exploration and
analysis of a real world timing chain design problem.

Keywords— Visual exploration, coordinated views, seg-
mented curve view, aggregated views, composite brushing.

1 Introduction
Durability and low noise levels are some of the key de-

sign goals for car engines. One of the factors affecting
those design criteria is the quality of the motion transfer
from the engine’s crankshaft to the camshaft. The camshaft
rotation must be synchronized to the piston’s motion since
the camshaft actuates the valves. Most automotive engines

use chain or belt drives for this motion transfer. Various
factors such as high engine speeds, dynamic and inertial
phenomena may cause undesired vibrations that increase
noise levels and mechanic wear. This behavior can be
simulated in software thus simulation tools are used ex-
tensively in the design of timing chain drives.

The design process involves running many simulation
variants with various values of input (control) parameters.
However, the analysis of many simulation runs poses new
challenges. Previous analysis methods included static dia-
grams and animated 3D visualizations [14, 6] suitable for
the detailed analysis of one or very few simulations. How-
ever, they do not facilitate the interactive comparison of
many different simulations variants. We demonstrate that
using multiple linked views of timing chain simulation data
simplifies and accelerates the analysis.

In a timing chain simulation data set, the control param-
eters constitute a subspace that we call independent vari-
ables. The output (response) parameters are the dependent
variables. Many response parameters are data series, often
represented as function graphs. We use the term family of
function graphs to denote a set of functions that take the in-
dependent variables and an additional variable like time as
input. A significant part of the simulation results of timing
chain drives are families of function graphs — one function
graph for each simulation run. In our previous work [5, 8]
we described an approach and a related tool for interac-
tive visual analysis with emphasis on the function graph
characteristic of the data. A family of function graphs was
presented as an aggregated 2D plot view, the curve view,
of all the function graphs.

While this approach proved to be very effective, the
curve view fails to reflect certain properties of some data
sets containing families of function graphs. Accordingly,
we propose a novel view, the segmented curve view, which
is related to histograms or histogram-like frequency-based



visualization techniques. For a fixed value of the indepen-
dent variable, a bar extends from minimum to maximum
values across the family of function graphs. Each bar is di-
vided into segments (bins) where color represents the num-
ber of function graphs with the value in that segment. The
new view provides a valuable insight into chain simulation
data and offers, in some cases, significant advantages over
the curve view.

The remainder of the paper is organized as follows:
Section 2 describes related work on the visualization of
data series, segmenting and grouping of function graphs
for analysis. Section 3 discusses the new view and the re-
lated analysis techniques. Section 4 provides a short intro-
duction to the rigid body based simulation of timing chain
drives. Section 5 gives a case study that illustrates analysis
and exploration of simulation results using multiple linked
views. Section 6 concludes the paper.

2 Related Work
Visualizing families of function graphs is part of a larger

topic of high dimensional and time-dependent data visual-
ization [15]. The new segmented curve view is based on
the curve view [5, 8] and several other visualization tech-
niques including binning, box plot views and methods for
the visualization of time-dependent data.

The process of binning [13] partitions the data space
into intervals (bins) and assign an occupancy value to each
bin indicating the number of data items that belong to the
bin. In other words, the “new data” represents a count of
the original data items in each bin.

A histogram is one example of binning. The width of
each bin and the offset of where the bins start determine
how the histogram appears. There are many other applica-
tions of binning, for example, the identification of outliers
in parallel coordinates visualization of large data sets [11].

The box plot view [16] is a graph that summarizes the
statistical measures like median, upper and lower quartiles,
and minimum and maximum data values. It provides a
graphical display of a variable’s location and spread and
allows quick examination of a data set by presenting a sum-
mary of the data distribution. Unlike histograms and prob-
ability density functions, it does not require assumptions of
the statistical distribution.

Box plots can be modified to provide additional infor-
mation like the sample size, density information and fur-
ther statistical properties [12]. The variations include hist-
plot, box-percentile plot, violin plot, and section density
plot [12]. For example, the section density plot uses occlu-
sion and color intensity variation to create an implied 3D
display of distribution.

The box plot can also be used for higher dimensional
data. The main problem is how to represent the summary
values using some simple visual metaphors with meaning-

ful spatial positions. The variant of the bivariate box plot
include the rangefinder box pot, two-dimensional box plot,
bagplot, relplot and quelplot [12].

Müller and Schumann provide an overview of the visu-
alization methods for time-dependent data [10]. The re-
lated visualization techniques can be classified into two
distinct groups based on whether or not the visual repre-
sentation itself is time-dependent.

The simplest approaches use mapping of time on a
quantitative scale. That includes a Sequence Graph for the
one-dimensional case and a Time Series Graph for the two-
and three-dimensional cases. Similarly, we can leverage
characteristics of the data set to use a Point Graph (point
data), a Line Graph (continuous data), a Bar Graph (cu-
mulative data), and a Circle Graph (cyclic data) [10].

Special visual metaphors like Calendar View [17] or
Lexis Pencils [3] are also used. In Calendar View, van Wijk
et al. use a very intuitive calendar view to display clusters
of time series data [17]. Lexis pencils [3] display various
time-dependent variables to the faces of a pencil. Pencils
can depict several variables and can be positioned in space
to indicate the spatial context of the data.

Extensions of traditional visualization techniques to
time-dependent data include Wormplot that provides a scat-
ter plot for each time step. Time Wheel leverages parallel
coordinates so that the time axis is in the center and other
axes are located circularly around it. MultiComb arranges
those other axes in a star-shaped pattern [10].

Brushing the time axis to display details of the selected
time frame is a very common and useful interaction tech-
nique used with static representations. Timebox widgets by
Hochheiser et al. [4] can be used to brush both the time
axis and the attribute axis of graphs.

Carlis et al. introduce spiral graphs [1] to facilitate ex-
ploration of serial and cyclic data. Spiral arrangement of
data provides easy visual cues to both serial and periodic
aspects of the data.

A combination of the curve view and conventional
views [5, 9] can be used for the analysis of similar data sets.
The curve view can show all function graphs at once us-
ing transparency to depict the density of the curves. When
combined with linked views and brushing techniques it can
be used to display curves in focus and those forming the
context. The curve view was used to successfully display
and explore data sets containing more than 40,000 function
graphs per dimension.

A similar approach is described in [19]. This approach
uses extruded parallel coordinates, linking with wings and
three-dimensional parallel coordinates integrated in a sin-
gle rendering system that visualize trajectories of higher
dimensional dynamical systems [19].



3 Proposed Approach
In general, a data set contains m independent variables

and n dependent variables. The independent variables can
be expressed as x = [x1, . . . , xm] ∈ I . A dependent vari-
able can be either a scalar or a data series (function graph).
For a given dependent variable fj(x, t) that is a function
graph, a family of function graphs is a set of function
graphs for each possible value of x, {fj(xi, t)|∀xi ∈ I}.

The combination of function graphs and scalars in the
data set is particularly challenging. In our previous work
we used a combination of the curve view and standard
views (e.g. histogram or parallel coordinates) [5, 9] for
the analysis of such data sets (Figure 1).

Figure 1: An example of coordinated multiple views (curve
view, segmented curve view, histogram, and parallel coor-
dinates) and a composite brush.

We use multiple linked views and advanced interactive
brushing to assess the data using iterative visual analy-
sis. The key factor is the ability to create complex, com-
posite brushes that span multiple views. The brushes are
constructed using various combination schemes based on
AND, OR, and NOT operations. The first operand is al-
ways the result of the previous composition. The next iter-
ation takes the state of the previous brushing and the new
brush as the only two arguments in the new operation. This
approach provides for an intuitive and iterative workflow.

All the variables are treated the same so it is possible
to brush in views of both dependent and independent vari-
ables to study their relationship in both directions. For ex-
ample, brushing some output variables allows us to find
suitable inputs. For more detailed explanation of analyti-
cal procedures and brushing mechanism see [5].

The curve view allows us to display a whole family of
function graphs and select a subset of graphs. Figure 2
shows the maximum connection forces between neighbor-
ing chain links from a timing chain simulation. Since there
are 100 chain links in the chain, the horizontal axis is la-
beled from 1 to 100. There are 1,152 different simulation
variants with different settings of design parameters. The

curve view shows the family of 1,152 function graphs, one
function graph represents each simulation variants.

Figure 2: Curve view of a family of function graphs. The x
axis represents the chain link index (1–100). The y axis in-
dicates the maximum connection force at the given link. In
this curve view there is one function graph for each of the
1,152 simulation variants, producing an overlay of 1,152
individual function graphs of maximum connection force.

However, there are several issues with the curve view.
The continuous curve view suggests continuity in the dis-
played data series. If the actual data is continuous in na-
ture then connecting the sample points with continuous
lines in a function graph plot is a valid and meaningful ap-
proach. However, if the data is not continuous then the
visualization is semantically incorrect. Choosing the right
transparency factor in an alpha-blended curve overlay is
always a difficult task. A transparency setting that reveals
the distribution in densely populated regions makes out-
liers barely visible. Conversely, a transparency setting that
preserves outliers makes dense regions indiscernible be-
cause of overdraw. We address those issues by suggesting
a novel view, the segmented curve view, for the visualiza-
tion of families of function graphs. We will use the data set
in Figure 2 to introduce the segmented curve view so that
direct comparisons between the two views can be made.
3.1 Segmentation and Binning

The segmented curve view provides two-fold segmenta-
tion of the displayed data. Individual bars for each value of
t serve to avoid the possibly false suggestion of continuity
and to provide segmentation along the independent axis.

The bars depict minimum and maximum values of the
dependent variable for each independent variable. This
idea is not new and similar approaches have been used [2].
However, we extended it and instead of showing only the
minimum to maximum range, we also show the distribu-
tion of dependent variables in a bar.

In order to depict the distribution we introduce segmen-
tation along the vertical axis. Each bar is divided into seg-
ments (bins) of uniform height where each segment is col-
ored to indicate the number of curves passing through the
segment. We use the same color mapping (the orange-



(a) Global binning creates equal size bins in all bars, which makes direct
comparison of bars easier, but fails to show fine details of distribution
in shorter bars.

(b) Local binning creates the same number of bins in all bars, which re-
veals more information in densely populated areas.

Figure 3: (a) Global and (b) local binning in the segmented curve view using 16 bins. Orange bins contain few curves while
black ones contain many. In (a) black bins contain 412 curves while in (b) they contain 336.

black color gradient) throughout the paper to provide a
consistent presentation of views. Bins with the smallest
curve count are shown in orange and the ones with the
largest curve counts are black. Although a detailed dis-
cussion of color scales is not in the scope of this paper,
we must mention that there are perceptual issues related to
color mapping [18]. The human eye distinguishes some
hues and gradients better than others. The orange-black
gradient was chosen because it seems to convey the den-
sity of curves well.

When segmenting a bar we can take the bar’s ac-
tual minimum and maximum and uniformly partition this
range. We term this local binning. Alternatively, we can
partition the range defined by the overall minimum and
maximum of all bars. We term this global binning. Fig-
ure 3 illustrates both binning strategies.

Global binning produces bins in different bars that have
the same limits. This makes the direct comparison of distri-
butions of various bins possible. However, when the min-
ima and maxima of various bars are very different, many
bins will be out of that range, leaving relatively few within
the bars. That does not allow a detailed display of distri-
bution within the bars. We could create more bins to have
a better resolution. The number of curves in the most pop-
ulated bin will decrease and the color gradient will have
fewer entries. That fails to show the distributions properly.

On the contrary, local binning creates the same number
of bins in each bar. This provides a finer resolution for bars
whose minimum and maximum values are closer. Since
the bin limits in different bars are different, comparing dis-
tributions in different bars is less straightforward. Con-
sequently, global binning works better with more uniform
minimum and maximum values, while local binning shows
distribution in very non-uniform data using relatively few
bins.

Some bins between the minimum and maximum of a
bar may have no curves in them so they should not be vis-
ible. Bins beside empty ones are not drawn using original

bins limits. If a non-empty bin has an empty bin as a neigh-
bor, then the limits of the non-empty bin are moved to the
actual minimum or maximum values of the bin. Figure 4
shows the procedure and Figure 5 shows the result.

maximum value in bin

minimum value in bin
with an empty bin below

with an empty bin above

curves passing
through the bar

empty bin

limits of bins next to the
empty one are changed

Empty bins hiddenAll bins shown

Figure 4: The process of removing empty bins. The limits
of the bins next to the removed one are set to the actual
minimum and maximum values of the curves in them.

Figure 5: Empty bins in Figure 3(b) are hidden using the
idea shown in Figure 4.

We propose two possibilities to add frames to the indi-
vidual bars in order to preserve their integrity (Figure 6).



Figure 6: Framing the bars with rectangles (left) or
boxplot-like lines (right) helps preserve the integrity of
bars when empty bins are hidden.

3.2 Color Mapping Strategies and Linking
By default, bins that contain one curve are drawn using

the first color of the gradient. The most populated bin of all
is drawn using the last color of the gradient. This is termed
global color scale.

The segmented curve view provides focus+context vi-
sualization. Figure 7 illustrates that the focus set is visual-
ized using colored bins and the context is shown in uniform
gray. Local binning is performed on the range between the
minimum and maximum values of the currently brushed
items in each bar, as opposed to the minimum and maxi-
mum values in each bar, Consequently, more details of the
distribution are displayed in the focus.

When the segmented curve view is linked to some other
view, the most populated bin in the focus set can con-
tain considerably fewer curves than the absolute maximum.
This means that only the first few colors of the color gradi-
ent are used for the displayed bins. Figure 7(a) shows that
this renders the color gradient and the distribution less vis-
ible. We can overcome this problem by mapping the last
color in the gradient to the number of curves in the most
populated bin in the actual focus set. This local color scale
is shown in Figure 7(b). It helps to reveal the details of the
distribution in the focus.

However, using a global color scale has an important
advantage: the same color represents the same number of
curves regardless of how many items are actually brushed.
This preserves the temporal coherence of the visualization.

3.3 Brushing in the Segmented Curve View
We can brush a specific range in the segmented curve

view to reveal finer details of the distribution. Local bin-
ning is performed on the brushed range to reveal more
details and the brushed items are also highlighted in the
linked views. We offer a rectangular brush that can span
multiple bars. There are two ways to interpret a brush that
spans multiple bars. A curve can be selected if it enters and
leaves the rectangle through its vertical edges (Figure 8(a)).
That is the intersection (logical AND) of the sets of curves
selected in the individual bars. Alternatively, a curve can
be selected if it enters and leaves the rectangle through any
edge (Figure 8(b)). This is the union (logical OR) of the
curves selected in the individual bars.
3.4 Comparison with the Curve View

The curve view suggests that the displayed data series is
continuous while the segmented curve view does not. For
example, the time scale of function graph data acquired via
measurements or produced in simulation is inherently dis-
crete. The segmented curve view may be a better choice
for such discreet data, particularly when connecting the
sample points with continuous lines may be misleading.
An obvious example is the Fourier spectrum of time series
data.

Furthermore, the analysts are often interested in the
minima, maxima and distribution of function graphs of a
family. They want to see and compare how many graphs
fall within given ranges and discover patterns or outliers in
the distribution. More specifically, they want to find out if
there is any correlation between the distribution for differ-
ent values of t. In Figure 8(a) for example, the relatively
narrow and uniformly distributed range expands but still
has a roughly uniform distribution around the middle of
the horizontal axis. However, near the right end of the axis
most curves are concentrated in the lower ranges.

One could argue that the segmented curve view is noth-
ing more than a discretized version of the alpha-blended
curve overlay view, especially if many bins are created
with global binning. However, there is a very important

(a) Global color scale. The last color of the gradient is mapped to the
most populated bin in the entire family.

(b) Local color scale. The last color of the gradient is mapped to the most
populated bin in the current focus set.

Figure 7: (a) Global and (b) local color scales.



(a) Curves that never leave the brush are selected by taking a logical AND
of the brushed items in individual bars.

(b) Curves that enter the brush anywhere are selected by taking a logical
OR of the brushed items in individual bars.

Figure 8: Comparison of the brushes spanning multiple bars. In both (a) and (b) middle ranges of the first six bars are
brushed by the blue rectangle. The difference is how the sets of items selected in the individual bars are combined.

advantage of the segmented curve view compared to alpha-
blended curve overlays: the colors assigned to the seg-
ments can be chosen from an arbitrary color scale.

This avoids one drawback of alpha-blended curve over-
lays. When many curves are displayed in alpha-blended
curve overlays, their transparency has to be increased to
avoid clutter because of overdraw. However, it is often dif-
ficult to discern fine details of the distribution, especially
in areas where only few curves pass through. The individ-
ual curves are simply too transparent to be visible. With
the segmented curve view one can use a color scale for the
segments that is clearly visible against the background and
the visualization preserves both outliers and fine details in
the distribution.

4 Simulation of Timing Chain Drives
A timing chain drive (or a belt drive) is found in most

production car engines. The purpose of the timing chain
drive is to transfer motion from the engine’s crankshaft to
the camshaft. The camshaft actuates valves that must be
synchronized to the piston’s motion. Therefore, precisely
two crankshaft rotations are needed for a single camshaft
rotation. The chain’s motion deviates from its ideal kine-
matic path especially at high engine speeds. Dynamic
and inertial phenomena cause vibrations that increase noise
levels and mechanic wear. The vibration causes the accu-
racy of the motion coupling to deteriorate. The camshaft’s
rotational velocity does not remain constant and unde-
sired high frequency components are added. This induces
rougher and less controlled valve operation which can re-
duce fuel economy and power output.

This behavior can be simulated in software thus simula-
tion tools are used extensively in the design of timing chain
drives. The basic approach is to model each chain link as
a single rigid mass connected by spring/damper units to
neighboring chain links and simulate the resulting multi-
body system based on the Newton-Euler laws. The mo-
tion of the chain is computed only in the y-z plane. The
motion perpendicular to the plane can be ignored without

influencing the validity of the simulation. Therefore, each
chain link has three enabled DOFs (degrees of freedom)
— translations in y and z directions and rotation around x-
axis. Sprockets are modeled as generic mass elements with
only one DOF — rotational around x-axis.

(a) A model of the contact forces between chain links and sprock-
ets. The red region indicates the overlap area of the contact
contours. Each chain link has smaller circular contours at both
ends that model the bushing which comes into contact with the
sprockets. The side-bar contour is the outer edge of the chain
link that slides on guides.

(b) A model of the connection forces. Each chain link is con-
nected to its neighbors via stiff spring and damper elements.

Figure 9: Contact and connection forces in the chain sim-
ulation.



In a simulation the objects are described using their con-
tact contours. The contours of sprockets and guides re-
flect their actual shapes. However, the contours of chain
links consist of circles around the pins that interconnect the
chain links, because these are the surfaces in contact with
the sprockets and guides. There are two circular contours
at both pins of the chain links. The smaller circle is the sur-
face that comes into contact with the sprocket. The larger
circle is the outer surface of the link sliding on guides.

The simulation computes (among other attributes)
forces between elements. There are two classes of forces:
(a) contact forces between chain links and the sprock-
ets/guides, and (b) connection forces between neighboring
chain links. The contact forces act when a link comes into
contact with a sprocket or guide. The algorithm for com-
puting contact forces is based on evaluating the size of the
overlap area between the contact contours of the two ob-
jects, the stiffness of materials, the relative velocities and
the damping properties of the materials. The connection
forces act between neighboring chain links and are com-
puted in a similar way. Figure 9 illustrates the correspond-
ing connection and contact force models. For a more de-
tailed explanation about the simulation of chain drives with
rigid body dynamics please refer to [14].

5 Case Study: Interactive Visual Analysis of
a Timing Chain Drive

One of the authors is an engineer working on valve train
and timing drive design projects at AVL-List GmbH. This
section documents our analysis procedure of a real timing
chain drive model. We used a model of a basic type chain
drive system which consists of two sprockets, the camshaft
sprocket (38 teeth) and the crankshaft sprocket (19 teeth).
Additionally, two fixed guides lead a bushing chain along
the chain path to reduce vibrations. The constant load is
applied at the camshaft sprocket and a constant rotation
is prescribed at the crankshaft sprocket. Lash in the chain
and friction in contacts between the chain and sprockets are
not considered. A commercially available software pack-
age, EXCITE Timing Drive from AVL [7], was used for
the timing drive simulation. It is a multi-body simulation
software tool for the simulation of engine valve train com-
ponents. Figure 10 shows the model in the simulation soft-
ware at two different levels of abstraction.
5.1 Simulation Parameters

Numerous control parameters can be defined in the sim-
ulation software. In the scope of this case study we varied
engine speed and four design parameters: sprocket stiff-
ness, guide stiffness, chain preload and camshaft sprocket
offset from the designed position in the z direction (see
Figure 10). A positive offset means that the camshaft
sprocket is further away from the crankshaft than its kine-
matically ideal position, therefore the chain becomes rela-

tively short. Table 1 shows the ranges of variation of the
parameters.

(a) (b)

Figure 10: (a) 3D model of the chain and (b) the model
simplified to simulation contact contours. Red boxes indi-
cate the centers of gravity of chain links.

Table 1: Control parameters
Parameter Values Unit

sprocket stiffness 1.0E+7, 4.0E+7, 7.0E+7, 1.0E+8 N/m
guide stiffness 5.0E+6, 2.0E+7, 3.5E+7, 5.0E+7 N/m
chain preload 100, 200, 300, 400 N
sprocket offset -0.5, 0.0, +0.5 mm
engine speed 1000, 2000, 3000, 4000, 5000, 6000 rpm

There are 1,152 possible combinations of these param-
eters or 1,152 simulation cases. A simulation run is per-
formed for each case with a simulation period that is suffi-
cient for all chain links to complete a full revolution. Five
response parameters were computed for each case:

• Maximum contact forces [N] for each chain link.
This is a function graph where the independent vari-
able represents a chain link (1 to 100) and the depen-
dent variable represents the maximum of the contact
forces that act on the link in the simulated time span.

• Maximum connection forces [N] for each chain link.
This is a function graph similar to the previous one.

• Overall maximum contact force [N]: scalar.
• Overall maximum connection force [N]: scalar.
• Fourier Transform of the camshaft sprocket’s rota-

tional velocity [rad/s vs. orders]: function graph.



(a) Contact forces for each chain link. (b) Parallel coordinates of the parameter space. (c) Connection forces between chain links.

Figure 11: Invalid parameter combinations investigation. One graph of very unusual shape is brushed in red in (a). Other
graphs are shown in gray to provide context. This graph shows that a number of chain links suffer extremely high contact
forces. The parallel coordinates reveal that this happens at 6000 rpm when the camshaft sprocket is offset by 0.5 mm, the
sprocket material is very stiff and the preload is small. The corresponding connection forces (c) are also very high.

5.2 Visual Analysis Goals
Standard tools for the analysis of chain drive simulation

data include 2D charts and animated 3D representations,
as described in [14, 6]. Those methods are sufficient if en-
gineers want to analyze one or only a few simulation runs.
With increasing computer power it is possible to run multi-
ple simulations (several thousands of them) in order to fine
tune design parameters for optimal results. However, the
analysis of many simulations requires a different approach.
For example, studying one thousand 2D charts describing
connection forces is not practical, nor is an elaborate 3D
rendering of one thousand cases with many geometric de-
tails. We have developed a new visualization approach for
this application and propose a new view to analyze some
attributes of such a large number of simulations.

Engineers generally face four main tasks in the analysis
of chain drive simulations:

• finding invalid parameter combinations
• parameter sensitivity evaluation
• reducing chain noise
• keeping contact and connection forces within a range

5.3 Invalid Parameter Combinations
The first task engineers are interested in is checking if

some of the control parameter combinations result in in-
valid responses. These combinations must be excluded
from further analysis. This is an investigation process.

In order to check results, the curve view is used to inves-
tigate maximum contact forces. One clear outlier curve is
visible in Figure 11(a). The outlier is selected by the black
line brush in and parameters that lead to such system be-
havior are shown in the parallel coordinates Figure 11(b).
This outlier comes from a simulation case where the very
stiff camshaft sprocket is pushed 0.5 mm away from the
crankshaft, the preload is small and the engine speed was

high. A quick investigation of this case in the animated 3D
visualization [6] revealed that the chain is vibrating wildly,
as shown in Figure 12. We suspect that the aforemen-
tioned combination of parameters produces a resonance in
the chain that generates extremely high forces. The behav-
ior is actually so out of control that we assume that there
may be an error in the other model parameters, perhaps
incorrect initial conditions for this case.

Figure 12: Three frames of the animated 3D view of the
extreme chain vibration.

5.4 Parameter Sensitivity Evaluation
This is also an investigation process where the goal is to

identify the main parameters and understand how chang-
ing those parameters influences the defined results. If one
considers the simulation process as a black box, then this
procedure can be called a black box reconstruction step [5].

First, we investigate connection forces at various engine
speeds. The engine speed is not a design parameter that we
can control but we want to understand how the results de-
pend on engine speed. We brush various engine speeds and
study the linked segmented curve view displays. Figure 13
shows connection forces at 1000 rpm and 4000 rpm.



(a) Connection forces at 1000 rpm.

(b) Connection forces at 4000 rpm.

Figure 13: Engine speeds of (a) 1000 rpm and (b) 4000 rpm
are brushed and the corresponding connection forces are
highlighted in the segmented curve view that uses 64 bins,
global binning and a local color scale. The connection
forces are rather varied at 4000 rpm, but at 1000 rpm there
are three clearly visible clusters.

Figure 14: First, engine speed of 1000 rpm was brushed
in the parallel coordinates. This highlighted three clusters
in the segmented curve view of connection forces (Fig-
ure 13(a)). An AND brush (see Section 3.3) spanning all
bars was used to select the middle cluster. The correspond-
ing sprocket offset is shown in the parallel coordinates.
Brush number 3 narrows the focus to a specific preload set-
ting in order to examine the additional influence of preload
on the forces. By moving brush 3 we discover that higher
preload causes slightly higher connection forces.

There are three clearly visible clusters of connection
forces at 1000 rpm in Figure 13(a). We assume that there
is a control parameter causing this clustering. This will be
investigated later. We also note that at 4000 rpm there are
no clearly visible clusters. This indicates that the individ-
ual graphs exhibit more variety. We infer that it is probably
more complicated to keep the connection forces in a spec-
ified range at higher engine speeds.

We examine the clusters noted in Figure 13(a). This
time we brush the engine speed in the parallel coordi-
nates and then brush the three clusters of connection forces

(Figure 14, brushes number 1 and 2). The corresponding
sprocket offsets are highlighted in the parallel coordinates.
The low, middle and high clusters correspond to −0.5 mm,
0 mm and +0.5 mm sprocket offsets, respectively. Cases
with high connection forces are not invalid, but they are not
desired, since they cause increased wear.

We examine the consequences of various preload pa-
rameters by brushing the corresponding axis in parallel co-
ordinates (Figure 14, brush number 3). Larger preload val-
ues generate slightly larger connection forces, but the in-
fluence is far more subtle than that of the sprocket offset.

(a) Low guide and sprocket stiffness produces low contact forces. The
distribution is very even, which means similar forces act on all chain
links.

(b) Higher sprocket stiffness creates higher contact forces. Very few chain
links have exceptionally high forces. The reason for three-way cluster-
ing is again the different sprocket offset parameter like in Figure 13(a).

(c) Stiffer guide material also increases the contact forces, but it also
makes their distribution more varied. Some chain links often suffer
considerably larger than others.

Figure 15: Three snapshots showing the influences of var-
ious stiffness parameters on contact force.

Finally, we examine the influences of the different guide
and sprocket stiffness parameters on the contact forces. We
brush those two parameters in a scatterplot, move the brush
to various combinations and study the contact forces. This
would be a difficult task with the alpha-blended curve view.
It is practically impossible to choose an alpha value which
is transparent enough to reveal details in densely populated
regions but at the same time opaque enough to preserve



graphs in less crowded parts of the view.
The segmented curve view succeeds in displaying the

details of the distribution in dense areas and the outlier
graphs at the same time. Figure 15 captures three snap-
shots of this interactive exploration. We find that using
stiffer material for sprockets increases the maximum con-
tact force on chain links. Stiffer guide material has similar
implications, but it also makes the distribution of contact
forces less even. A very stiff guide results in some of the
chain links suffering extremely high contact forces, while
forces on others links is kept within a tighter range. It is
obvious that this uneven distribution of forces causes extra
wear of the more loaded chain links and it is more prefer-
able to have an even distribution.

5.5 Optimization
We investigate two optimization goals. We try to re-

duce chain noise and keep the magnitude and fluctuation
of maximum forces low in order to reduce dynamic load
on the chain that causes extreme wear.

The level of chain noise is in correlation with the mag-
nitudes of the contact forces. The noise spectrum is related
to the higher order components of the camshaft sprocket’s
rotational velocity. Therefore we want to minimize peaks
in the Fourier transform of the rotational velocity. We first
examine what conditions lead to high peaks in the spec-
trum. Figure 16 shows that these peaks appear at higher
engine speeds only. However, even at 6000 rpm there is
a gray part of the histogram, which means there are pa-
rameter combinations which avoid those high peaks in the
spectrum at 6000 rpm.

There is an interesting peak at the 19th order (located at
the right end of the spectrum). This is related to the chain
drive specific polygon effect. Chain links engage and dis-
engage to/from the sprocket as it rotates. That produces
a whining noise with frequency of n ∗ (u/60) where n is
the number of crankshaft sprocket teeth and u is the engine
speed in rpm.

There is another important consequence. The sprocket’s
moment is distributed onto a different number of chain
links depending on the sprocket’s angular position. This
can be considered as a discrete process due to high con-
tact stiffness. These abrupt changes in load lead to os-
cillations in the rotational velocity and chain connection
forces with an order that equals the number of crankshaft
sprocket teeth. In Figure 17 we brush this peak in the seg-
mented curve view and discover that all simulation cases at
1000 rpm are highlighted in the histogram. That means we
are not able to remove the polygon effect completely with
any combination of parameters used here. We will try to
minimize it, though.

We now try to find the parameter values that produce
optimal chain behavior. The ideal case has low contact and

connection forces and the fluctuation of forces should also
be minimal. We want flat and low force diagrams. The
camshaft sprocket’s rotational velocity spectrum should
not have high amplitude components, especially at higher
orders, in order to reduce high frequency noise.

Figure 16: High peaks are brushed with the red rectangle
in the Fourier transform of the camshaft sprocket’s rota-
tional velocity. The OR brush (see Section 3.3) selects all
graphs that enter the rectangle. The histogram shows that
these peaks appear at high engine speeds. Note that in this
segmented curve view we use local binning because it is
more useful for the visualization of the wide variations in
the maxima.

Figure 17: We brush the peak at the 19th order of the FFT
of the sprocket’s rotational velocity (red rectangle at the
right end of the segmented curve view). That peak is re-
lated to the polygon effect specific to chain drives. All sim-
ulation cases of 1000 rpm engine speed are highlighted in
the histogram. That means the polygon effect at 1000 rpm
cannot be removed by any combination of the parameters.

We now have an overview of how the parameters influ-
ence the result. We want to progressively narrow the set
of design parameter values to a single combination which
provides the best compromise. This is a highly interactive
process where the analyst creates and moves brushes and
examines the linked views of the response parameters.

For this procedure we will brush various ranges of con-
trol parameters in a parallel coordinates view of the design
parameters and observe the linked function graph views of



Figure 18: This snapshot captures the last iteration of the optimization process and shows the optimum design parameters.
Top left: The design parameters are brushed in the parallel coordinates. Top right: The segmented curve view shows that the
Fourier transform of the sprocket’s rotational velocity has few peaks and they have small amplitude. Bottom left: Maximum
contact forces are small at all chain links. Bottom right: All chain links have very small maximum connection forces.

connection force and contact force diagrams as well as a
segmented curve view of the spectrum of the sprocket’s ro-
tational velocity to see its distribution. Figure 18 captures
the final snapshot of this process.

Figure 14 shows that sprocket offset settings above
−0.5 mm produce undesirably high connection forces so
we brush −0.5 mm sprocket offset. Various preload pa-
rameters are then brushed and logical AND of the two
brushes is shown in the linked views of the response pa-
rameters. The preload of 400 N is selected because the
spectrum of the rotational velocity shows the smallest
peaks in the segmented curve view, while the maximum
contact and connection forces are kept in the lower range.

Identifying the optimal stiffness of sprockets and guides
is the next goal. We achieve that by adding new brushes
to the parallel coordinates for the varied parameters and
moving them while observing the other three linked views.
The smallest sprocket stiffness creates the smoothest con-
tact force diagrams. However, while the lowest guide stiff-
ness also produces low forces, the spectrum of the rota-
tional velocity has a more expressed peak at the 7th order.
The selected guide stiffness value in Figure 18 reduces that
7th order amplitude. The connection and contact forces are
still relatively low and with little fluctuation which is desir-
able. Unfortunately, the peak at the 19th order in the spec-
trum is still there but its amplitude is reduced. As we can
see in Figure 17 we cannot remove this peak completely
with this range of design parameters.

Considering all these factors, we find the optimal set of
design parameters that provides the best compromise for

noise, motion coupling accuracy and durability. Figure 18
shows the optimal parameters and the corresponding simu-
lation response. Note that we use the alpha-blended curve
view to display the contact and connection forces in this
figure. The reason is that we are interested in the actual ex-
act shapes of those graphs rather than their distributions
since we narrowed down the focus to the optimum set.
The alpha-blended curve view works better for this pur-
pose than the segmented curve view. The optimal design
parameters are summarized in Table 2.

Table 2: Optimum parameters
Parameter Value Unit

Sprocket stiffness 1.0E+7 N/m
Guide stiffness 2.0E+7 N/m
Chain preload 400 N
Sprocket offset -0.5 mm

6 Conclusion
Data sets from many application domains can be rep-

resented by a data model consisting of independent and
dependent variables that can either be scalars or function
graphs. The analysis of distributions in families of function
graphs is a common task in those application domains. We
introduced a visualization method based on coordinated
linked views and composite brushing that supports such in-
teractive analysis. The novel segmented curve view can vi-
sualize fine details in the distribution while also preserving
outlier graphs. The case study on the analysis of a timing



chain drive simulation data set demonstrates how the use
of linked views and the novel segmented curve view can
provide an insight into the analyzed data set that otherwise
would be very difficult. The segmented curve view features
(global/local binning, color mapping and brushing) proved
to be extremely useful.
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